8. Gradient and Directional Derivative

In this lecture, we will discuss

- A Review of Gradient of a Function of Two and Three Variables
- Directional Derivative
 - Coordinate Description of the Directional Derivative
 - Maximum Rate of Change of a Function

We will mainly focus on the gradient of a function $f : \mathbb{R}^m \to \mathbb{R}$, where m = 2 or 3. Recall the definition:

Definition Gradient of a Function of Two and Three Variables

Let $f:U\subseteq \mathbb{R}^2 o\mathbb{R}$ be a differentiable function. The gradient of f is the vector field abla f whose value at a point (x, y) in U is given by

$$abla f(x,y) = igg(rac{\partial f}{\partial x}(x,y), rac{\partial f}{\partial y}(x,y)igg).$$

The gradient of a differentiable function $f: U \subseteq \mathbb{R}^3 \to \mathbb{R}$ is the vector field

$$abla f(x,y,z) = igg(rac{\partial f}{\partial x}(x,y,z),rac{\partial f}{\partial y}(x,y,z),rac{\partial f}{\partial z}(x,y,z)igg).$$

defined on the subset U of \mathbb{R}^3 .

Example 0

Example 0 $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ Find the gradient of the function $f(x, y, z) = xe^{2y} \sin(6z)$ at the point $(1, 1, \pi)$.

Answer: $\frac{J+}{\partial x} = e^{2\theta} \sin \theta z$

$$\frac{\partial f}{\partial y} = \sum_{\substack{x \in \mathcal{U}^{xy} \text{ sin } 6z \\ \tau_{(xy)'}}} \frac{\partial f}{\partial z} = 6 \times e^{2y} \cos 6z \\ \frac{\partial f}{\partial z} = (\frac{\partial f}{\partial x}(1, 1, \pi), \frac{\partial f}{\partial y}(1, 1, \pi), \frac{\partial f}{\partial z}(1, 1, \pi)) \\ = (0, 0, 6e^2) = 0 \cdot i + 0 \cdot j + 6e^2 h$$

Directional Derivative

Let $f:\mathbb{R}^2
ightarrow\mathbb{R}.$

Recall the partial derivative of f at (a, b) with respect to x, denoted by $\frac{\partial f}{\partial x}(a, b)$, is defined as (similar definition for $\frac{\partial f}{\partial y}(a, b)$)

$$rac{\partial f}{\partial x}(a,b) = \lim_{h o 0} rac{f(a+h,b) - f(a,b)}{h}$$

- From the definition, we see that the partial derivative of a function f(x, y) with respect to x or y is the rate of change of f(x, y) in the (positive) x or y direction, respectively.
- 🤔 What about other directions?

Answer. It turns out that we can find the rate of change in any direction using a more general type of derivative called a *directional derivative*.

Here is a general discussion about how to obtain the definition of the directional derivative:

- Assume that f(x,y) is a function differentiable on an open set $U\subseteq \mathbb{R}^2$, and let $\mathbf{p}=(a,b)\in U$.
- We are going to compute the rate of change of f(x, y) at **p** in the direction of a unit vector $\mathbf{u} = (u, v)$.
- Recall $\mathbf{l}(t) = \mathbf{p} + t\mathbf{u} = (a + tu, b + tv)$ represents the line in \mathbb{R}^2 that goes through the point $\mathbf{p} = \mathbf{l}(0)$ and whose direction is given by the direction of $\mathbf{u} = (u, v)$.
- Compute the value $f(\mathbf{p} + t\mathbf{u})$ of the function f for each point $\mathbf{p} + t\mathbf{u}$ on $\mathbf{l}(t)$ that is in U.
- The collection of all points $\mathbf{c}(t) = (a + tu, b + tv, f(\mathbf{p} + t\mathbf{u}))$ forms a curve on the surface that is the graph of f.
- Notice that $\mathbf{c}(t)$ belongs to the plane perpendicular to the *xy*-plane that crosses it along the line $\mathbf{l}(t)$
- Denote the point $\mathbf{c}(0) = (a,b,f(a,b))$ by P, which is a point on the graph of f(x,y)
- We can define the directional derivative $D_{\mathbf{u}}f(a,b)$ as the slope of the tangent to $\mathbf{c}(t)$ at P.
- Therefore, $D_{\mathbf{u}}f(a,b)$ describes how f changes in the direction specified by the unit vector \mathbf{u} .

Definition Directional Derivative

Let $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a real-valued differentiable function. The directional derivative of f at the point $\mathbf{p} = (a, b)$ in the direction of the *unit* vector $\mathbf{u} = (u, v)$ is given by

$$D_{\mathbf{u}}f(a,b)=rac{d}{dt}f(\mathbf{p}+t\mathbf{u})igg|_{t=0}$$

Remark. From the limit definition of the derivative, we have

$$D_{\mathbf{u}}f(a,b)=\lim_{t
ightarrow 0}rac{f(\mathbf{p}+t\mathbf{u})-f(\mathbf{p})}{t}=\lim_{t
ightarrow 0}rac{f((a,b)+t(u,v))-f(a,b)}{t}.$$

In practice, we often use the following theorem for the computation of directional derivatives.

Theorem 1. Coordinate Description of the Directional Derivative Let $f:U\subseteq \mathbb{R}^2 o\mathbb{R}$ be a differentiable function, and $\mathbf{p}=(a,b)\in U$. Then

$$D_{\mathbf{u}}f(a,b) = \nabla f(a,b) \cdot \mathbf{u},$$

where $\mathbf{u} = (u, v)$ is a unit vector in \mathbb{R}^2 .

Proof. Let $\mathbf{l}(t) = \mathbf{p} + t\mathbf{u} = (a + tu, b + tv)$; then $\mathbf{l}(0) = (a, b) = \mathbf{p}$ and $\mathbf{l}'(0) = \mathbf{u} = (u, v)$. Consider the composition $f(\mathbf{l}(t)) = f(\mathbf{p} + t\mathbf{u})$ of \mathbf{l} and f. By the chain rule,

$$rac{d}{dt}f(\mathbf{p}+t\mathbf{u})=rac{d}{dt}f(\mathbf{l}(t))=
abla f(\mathbf{l}(t))\cdot\mathbf{l}'(t).$$

Consequently,

$$D_{\mathbf{u}}f(a,b) = rac{d}{dt}f(\mathbf{p}+t\mathbf{u})\Big|_{t=0} =
abla f(\mathbf{l}(0))\cdot\mathbf{l}'(0) =
abla f(a,b)\cdot\mathbf{u}.$$

If f is a function of three variables, then

$$D_{\mathbf{u}}f(a,b,c) = \nabla f(a,b,c) \cdot \mathbf{u},$$

where \mathbf{u} is a unit vector in \mathbb{R}^3 .

Example 1 Suppose $f(x,y) = \sqrt{\tan(x) + y}$ and \boldsymbol{u} is the unit vector in the direction of (3, -3).

Find the following values:

• $\nabla f(x,y)$ • $\nabla f(0.7, 6)$ • $f_u(0.7,6) = D_u f(0.7,6)$ ANS: (1) $\frac{\partial +}{\partial x} = \frac{\partial (\tan x + y)^{\pm}}{\partial x}$ recall $(\tan x)' = \sec^2 x$ $= \pm (\tan x + y)^{\pm} \cdot \frac{\partial t \tan x + y}{\partial x}$ $= \frac{\sec^2 x}{2 \sqrt{\tan x + y}}$ $\frac{\partial t}{\partial y} = \frac{1}{2 \sqrt{1 + cm \times t \cdot y}}$ Then $\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(\frac{\sec^2 x}{2\sqrt{\tan x + y}}, \frac{1}{2\sqrt{\tan x + y}}\right)$ (2) $\nabla f(0.7, 6) \approx (0.326758, 0.191148)$ (3) By Thm Y, $D_{\vec{n}} f(a, b) = \nabla f(a, b) \cdot \vec{u}$, where \vec{u} is a unit vector We first normalize the vector $\vec{v} = (3, -3)$: $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{(3, -3)}{\sqrt{3^2 + 3^2}} = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ $D = (0.7, 6) = \nabla f(0.7, 6) \cdot \vec{n}$ 7.0 = (0.326758, 0.191148) 6.0 •(計 - 击) 5.5 5.0 ≈ 0.0958906 2.8 2.6 2.4 0.0 0.5 1.0

Example 2

Find the directional derivative of $f(x,y,z)=z^3-x^2y$ at the point (-5,2,-3) in the direction of the vector $\mathbf{v}=\langle -1,5,3
angle$.

ANS:
Normalize
$$\vec{v} = \langle -1, 5, 3 \rangle$$
, we have $\vec{h} = \frac{\langle -1, 5, 3 \rangle}{\sqrt{(-1)^2 + 5^2 + 3^2}} = \langle -\frac{1}{\sqrt{65}}, \frac{1}{\sqrt{65}}, \frac{1}{\sqrt{65$

We have

$$D_{u}f(-S,2,-3) = \nabla f(-S,2,-3) \cdot \vec{u}$$

= $\langle 20,-2S,27 \rangle \cdot \langle -\frac{1}{\sqrt{25}}, \frac{5}{\sqrt{25}}, \frac{3}{\sqrt{25}} \rangle$
 ≈ -10.818

Example 3

Find the directional derivative of $f(x, y, z) = zy + x^2$ at the point (2, 3, 1) in the direction of a vector making an angle of $\frac{\pi}{4}$ with $\nabla f(2, 3, 1)$.

ANS:
$$\nabla f(x,y,z) = 2x \vec{i} + z\vec{j} + y\vec{k}$$

So $\nabla f(2,3,1) = 4\vec{i} + \vec{j} + 3\vec{k}$
Let \vec{u} be a unit vector making an angle of $\vec{4}$ with $\nabla f(2,3,1)$. Then by Thm 1, its directional directive is
 $\nabla f(2,3,1) \cdot \vec{u} = ||\nabla f(2,3,1)||\vec{k}||\vec{u}|| \cdot \cos \vec{4}$
Recall $= \sqrt{26} \cdot \sqrt{\frac{5}{2}}$
 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot |\vec{u}|| \cdot \cos \theta$
where θ is the angle between \vec{u} and \vec{v} .

Theorem 2. Maximum Rate of Change of a Function

Let f be a differentiable function on $U\subseteq \mathbb{R}^2$ (or \mathbb{R}^3) and assume that $abla f(\mathbf{x})
eq \mathbf{0}$ for $\mathbf{x}\in U$. The direction

of the largest rate of increase in f at ${\bf x}$ is given by the vector ∇f .

Proof. Let \mathbf{u} be a unit vector. By Theorem $\mathbf{1}$

 $D_{\mathbf{u}}f(\mathbf{x}) =
abla f(\mathbf{x}) \cdot \mathbf{u} = \|
abla f(\mathbf{x})\| \|\mathbf{u}\| \cos \theta = \|
abla f(\mathbf{x})\| \cos \theta$

(since $\|\mathbf{u}\| = 1$), where θ denotes the angle between $\nabla f(\mathbf{x})$ and \mathbf{u} . Since $-1 \leq \cos \theta \leq 1$, $D_{\mathbf{u}} f(\mathbf{x})$ attains its largest value when $\cos \theta = 1$; that is, when $\theta = 0$. Consequently, maximum directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ at \mathbf{x} occurs in the direction parallel to the vector $\nabla f(\mathbf{x})$.

Example 4

Let $f(x,y) = \frac{x}{y}$, P = (-1,-1) and $\mathbf{v} = \mathbf{i} + 2\mathbf{j}$.

Compute the following

- 1. The gradient of f.
- 2. The gradient of f at the point P.
- 3. The directional derivative of f at P in the direction of \mathbf{v} .
- 4. The maximum rate of change of f at P.
- 5. The unit direction vector \mathbf{w} in which the maximum rate of change occurs at P.

Normalize it, we have $\vec{w} = \vec{a} = (-\vec{b}, \vec{b})$ And the maximum rate of change is $rf(-1,-1) \cdot \bar{n}_{2} = (-1,1) \cdot (-\frac{1}{2},\frac{1}{2})$ = 1/2 & 1.414 which is indicated in the green arrow. S. By the previous dissense, we know $\vec{W} = (-\vec{E}, \vec{E})$ which is the unit vector in the direction of of out point P.

Exercise 5

Answer:

Let $f(x,y)=x^2y$ and $\mathbf{u}(t)=\left(t^2,2t^3
ight).$ 1. What is $\nabla f \cdot \mathbf{u}'(t)$? 2. Use the Chain Rule for Paths to compute $rac{d}{dt}f(\mathbf{u}(t))$ at t=-1.

1. We compute the partial derivatives of $f(x,y)=x^2y$

$$rac{\partial f}{\partial x}=2xy,\quad rac{\partial f}{\partial y}=x^2$$

The gradient vector is thus

$$abla f = ig(2xy,x^2ig)$$

Also,

$$\mathbf{u}'(t)=ig(2t,6t^2ig)
abla f\cdot\mathbf{u}'(t)=ig(2xy,x^2ig)\cdotig(2t,6t^2ig)=4xyt+6x^2t^2$$

2. Using the Chain Rule and substituting $x=t^2, y=2t^3$ gives

$$\frac{d}{dt}f(\mathbf{u}(t)) = \frac{d}{dt}(2t^4t^3) = \frac{d}{dt}(2t^7) = 14t^6$$

At the point t=-1, we obtain

$$\left. \frac{d}{dt} f(\mathbf{u}(t)) \right|_{t=-1} = 14t^6 \Big|_{t=-1} = 14$$